Projects at think[box]

 

Maple Tabletop August 15, 2018

Brock Williams, a Cleveland Clinic employee, designed and built this table in his garage. He laser cut spalted maple at think[box] to produce the decorative marquetry on the table top.

Contact:

Brock Winans - bwinans7@att.net

Next Generation MRI July 25, 2018

Magnetic resonance imaging (MRI) creates anatomical images by detecting magnetization in the human body. Prior to being detected, the magnetization must be "excited," which is typically done by applying a powerful radio-frequency magnetic field, referred to as the RF transmit field. However, the RF transmit field is potentially harmful to certain patients, especially those with implanted devices. By separating the RF transmit system into an array of smaller antennas and amplifiers working in parallel, the hazard is reduced, making it possible for millions of patients with implants to benefit from high field MRI.

Contact:

Michael Twieg - mdt24@case.edu

LightDrive Bollards July 25, 2018

These wooden illuminated covers were made by Julian Norton to cover bollards in his grandfather’s driveway. Julian made use of the think[box] laser cutters, waterjet cutter, and shopbot to find the best way to produce the pieces. He has since started his own company, the Cleveland Design Studio.

Website: Cledesignstudio.com

Contact:

Julian Norton - clevelanddesignstudio@gmail.com

The Read Read July 25, 2018

The Read Read is a breakthrough device in braille and phonics learning. Designed and built by Alex Tavares, the Read Read consists of tiles with raised braille and phonic letters that also contain a playable audio track. Each individual tile can be pressed to play the audio representation of that letter and the tiles can be positioned on a conductive grid to form words. This device allows blind or visually impaired individuals to easily and independently learn to read without the need of a personal tutor.  When he began prototyping the Read Read, Alex consulted with think[box] Student Workers to learn more about 3D printing and fine-tune his own making process.

Website: https://www.thereadread.com/

Contact:

Alex Tavares - alex_taveres@mail.harvard.edu

Alula July 17, 2018

Alula is a phone case that conveniently stores and dispenses daily birth control pills. Missed doses can reduce birth control’s effectiveness by as much as 8% per day. Alula’s phone application and case tracks the pills and reminds the owner to take their pills at optimal times.

Website: https://www.myalula.com

Copper Rose July 9, 2018

Sean Liu made this copper flower using the waterjet cutter to cut out the flower petals before polishing and shaping them into the finished piece.

Contact:

Sean Liu - sxl1026@case.edu

Philos-R June 19, 2018

Social robots interact and communicate with humans by following social behaviors and rules attached to their roles. This friendly robot continues a line of research projects that study human-robot interaction. Although commercially-available social robots now exist in the markplace, this project demonstrates a more affordable solution that offloads intensive computer processes to a cloud server to achieve low-cost yet real-time interaction with humans. Graduate students Xiao Liu and Tao Liu developed these systems in Professor Kiju Lee's Distributed Intelligence and Robotics Lab (dirLAB).

Website: https://case.edu/mae/robotics/philos.html

Contact:

Tao Liu- txl302@case.edu
Xiao Liu- xxl697@case.edu

Autonomous Welder June 7, 2018

The AW-1 by Path Robotics is an autonomous robotic welder. It uses proprietary image processing techniques to automatically find and weld seams. There is no programming, and the user does not need to provide CAD models as the machine is capable of operating automatically with zero prior knowledge of the part to be welded.

Video: https://www.youtube.com/watch?v=aA6IPaYZ-MA

Contact:

Andrew Lonsberry - agl10@case.edu
Alex Lonsberry - ajl17@case.edu
Matthew Klein - mak177@case.edu

Smart Glove June 7, 2018

Embedded electronics in this glove allow it to function as an innovative remote control device. Data from flexible resistive sensors in four fingers along with a force-sensing resistor in the thumb are transmitted using an XBee radio communication module to the receiving equipment. To test this technology, the glove was used to remotely control a small research robot in Professor Kiju Lee's Distributed Intelligence & Robotics Laboratory.

Website: http://case.edu/mae/robotics/

Contact:

Chuanqi Zheng - cxz304@case.edu

Reconfigurable Origami Antenna June 7, 2018

This radio signal tracking robot incorporates a collapsing planar antenna constructed from a laminate of aluminum foil and paper. When antenna is deployed, the robot will rotate and continuously measure the signal strength of a nearby radio transmitter. When the angular direction of the maximum signal strength is found, the robot will move in that direction a fixed amount and iterate this process to eventually locate the source of the transmitter. Graduate student Chuanqi Zheng built this research robot in Professor Kiju Lee's Distributed Intelligence & Robotics Laboratory.

Website: http://case.edu/mae/robotics/

Video: www.youtube.com/watch?v=L-SmMecmRro

Contact:

Chuanqi Zheng - cxz304@case.edu